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 Abstract- Data sources that are typical of the next genera-
tion of biological information entities are gene chips that 
identify the individual genes in a given biological sample.  
These data are currently stored in a database format de-
fined by the Genetic Analysis Technology Consortium 
(GATC).  To interpret the chip data, we also need infor-
mation about the genes themselves, as found in the Hu-
man Genome Database (HGDB).  These two databases 
were conceived at different times to serve different pur-
poses, and their designs differ significantly.  Extracting 
information simultaneously from multiple databases has 
proved to be a very difficult problem. 
 

We have developed a system that will intelligently direct 
a single client query against a federation of databases.  
Our solution uses software standards common in the field 
today - XML, CORBA, and Java - but these standards by 
themselves are not sufficient.  We have developed a new 
component called the Class Mapper, a software layer 
unique to each database.  Each Class Mapper represents 
its database as an object-oriented schema consistent with 
the schema level of the federation.  A Federation Platform 
reads the query, the Class Mappers execute the query 
across their respective databases, and the Federation Plat-
form returns results to the client. 
Keywords -  Biological databases, XML, CORBA, Java, 
database federation, genetic database, Class Mapper.     

 
I. INTRODUCTION 

 
Recent advances in biology have produced an extraordi-

nary number and variety of data sources that must be used 
together to address problems in medicine and biology [1-3].  
Among the most visible are the data sources that capture our 
understanding of the human genome.  Prominent among these 
is the Human Genome Database (HGDB) [4] that was de-
signed to be a central repository for accumulating and dis-
seminating genetic data.  It contains three main types of 
information: regions of the human genome; maps of the hu-
man genome; and variations including mutations and poly-
morphisms.  The size of the HGDB is more than a terabyte.   

 
A second class of data sources comes from experiments.  A 

representative of these data is the GATC format developed by 
the Genetic Analysis Technology Consortium [5] to capture 
the information in gene chips that contain 105 or more indi-
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vidual reaction wells, each of which represents an individual 
genetic test.  A single gene chip entry in a GATC database 
would contain intensity information for each individual gene 
assayed by the chip as well as metadata giving the details of 
the experimental conditions and the analysis protocols.   

  
We have taken the HGDB and GATC databases as repre-

sentative of the many data sources that must be addressed 
together.  Our objective is to be able to write a single query 
that will extract data from several databases simultaneously 
and in an intelligent manner.  This means identifying the in-
dividual databases where specific data exist, parsing the 
query to address the right databases, and reassembling the 
result in such a way that, from the client point of view, the 
process is indistinguishable from a single query against a 
monolithic database.  

 
The technical literature reveals a large number of attempts 

to federate databases using different methods and approaches. 
[6-14] This activity was very pronounced during the period 
around 1990-1994, but nearly all of those projects, including 
a promising effort called Pegasus at Hewlett Packard [13], 
seemed to disappear during the ensuing 5 years.  In particular, 
the Pegasus project was to have users add remote schemas to 
be imported into the Pegasus database, thus making it a dy-
namic federated database.  Non-object-oriented schemas were 
mapped to object-oriented representations within the global 
database.  The global access language HOSQL (Heterogene-
ous Object SQL) had features of a multidatabase language 
system; however, local users were responsible for integrating 
imported schemas.  All traces of this work vanished after 
1993.  Other notable approaches, including a system called 
MARGBench that originated at the Otto-von-Guericke Un-
versity in Magdeburg, Germany [7], are discussed in the ref-
erences. 

 
The present work builds on previous efforts in our group to 

develop a common access technology between different data-
bases.  This approach came from the realization that writing 
and maintaining unique access software for each individual 
database would make the concept of federated databases 
nearly unworkable.  The mechanism that was developed is 
called the Class Mapper [15-17].   The Class Mapper is a 
software layer that represents its underlying database to the 
federation as an object-oriented schema (a ClassMap) that 
completely describes the functionality of the underlying data-
base. 
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The Class Mapper also supplies the procedures to query the 
database in its own language and return results to the federa-
tion.  Data exchange between the Class Mapper and the fed-
eration can then be carried out using reusable tools, and 
queries of one database appear to be operationally identical to 
the queries of any other database in the federation.  Transport 
protocols can then be built using standards such as JDBC or 
CORBA to evoke TCP/IP.   XML can also be used to define 
the data packages exchanged; this is discussed elsewhere 
[15]. 
 

II. THE FEDERATION PLATFORM  
 

The database federation architecture consists of a client, a 
Federation Platform with a local database, and two or more 
external databases that contain information used to compose 
an answer to the query from the client.  Fig. 1 presents an 
overview of the transaction architecture.  We have used the 
problem of federating the GATC database and the HGDB 
database in this example.  Numbers in circles indicate the 
steps in processing a query that initiates at the client at point 
➀.  The Federation Platform is designed to parse the query, 
communicate with the Class Mappers on the individual data-
bases, and create and maintain a transient database (the Local 
Database in Fig. 1) to efficiently extract specific information 
to satisfy the query. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1 The transaction architecture in a federated database. 
 

Steps ② and ③ represent separate queries to the GATC 
and HGDB databases to retrieve individual parts of the in-
formation that will be used to satisfy the query in ①.  What is 
returned to the Federation Platform is a series of partial tables 
from the GATC and the HGDB.  These partial tables are then 
used in ④ to construct a Local Database that contains only 
information relevant to the current query.  The fact that these 
tables are written back to the Federation Platform upon each 
query insures that the data used in answering the query are 
current.  The actual query and other processing algorithms are 

run against the Local Database in ⑤, returning the result ⑥.  
At the end of the query, the information in the Local Database 
is discarded. 

 
By using a Local Database, all of the results that have been 

retrieved from the remote databases are easily accessible us-
ing standard database tools that are designed for such pur-
poses.  Storage scalability is a second advantage.  Database 
systems are built to be scalable to terabytes with good per-
formance.  With good commercial database technology, one 
can scale to multi-gigabyte file queries without severe per-
formance penalties.  Without using database functionality, 
such file sizes could quickly exceed the capacity of system 
memory, forcing the use of brute-force memory swapping to 
handle complex queries.  Finally, the Local Database can take 
advantage of built-in database management features such as 
query optimization, security, recovery, and data integrity.   

 
Although we have yet to implement it, one could also make 

use of local cache mechanisms to allow partial tables from the 
external databases to be saved between queries so that build-
ing sequential Local Databases from the same partial tables 
could be accelerated.  A mechanism much like the cache con-
trol used on internet browsers could be adopted.  This could 
also reduce network traffic in cases where the partial tables 
were large and/or the network connections were slow. 

 
III. IMPLEMENTATION 

 
Our first implementation of the GATC-HGDB database 

federation was implemented on a Sun 450 running Solaris 7 
using local disks and separate databases representing the 
GATC and HGDB databases.  We built all three databases - 
the GATC database, the Local Database, and the representa-
tive HGDB database - using Informix Dynamic Server 2000.  
For the HGDB database, we did not use the entire database at 
the NIH because it is over a terabyte in size.  The difficulties 
of replicating and keeping current such a large local database 
would have detracted from our main goal of achieving feasi-
bility testing.  A partial HGDB database (we call it "HGDB 
Lite") was therefore built locally to handle information spe-
cifically relevant to the test queries that we were writing.  It 
was built to conform to the full HGDB Class Map as defined 
by Chuang [17]; we simply populated a small fraction of the 
available tables. 

 
Class Mappers were available for both the GATC and the 

complete HGDB databases from the work of William Chuang 
[17].   The GATC database was populated with about 500 sets 
of Affymetrix gene chip data that were kindly supplied by 
Michael Cardone of the MIT Department of Biology.  No 
Class Mapper was required for the Local Database because it 
was created on the fly by the Federation Platform itself and 
therefore was completely known to the program.  The 
"HGDB Lite" had about two dozen tables and roughly a 
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GByte of representative data that covered a range of queries 
related to GATC information. 

 
The DNA identifiers (called Accession ID’s) in the GATC 

database correspond to DNA segments with genomic charac-
teristics.  However, these characteristics are stored in the ta-
bles and connections of the HGDB.  In order to associate a 
particular DNA segment from an experiment with its genomic 
characteristics, the two databases must be used in parallel.  
The problem then becomes the task of querying data across 
the two database domains.   
 

Merging the two databases does not represent a feasible so-
lution to the problem.  Both databases are dynamic because 
new experimental data are being continually added to the 
local GATC database and the HGDB is itself an evolving 
entity.  As our prototype demonstrates, federation offers a 
viable solution that can be applied to multiple databases and 
multiple queries.  

 
As might be expected from the design shown if Fig. 1, the 

Federation Platform encompasses a significant amount of 
functionality.   First, the ClassMap for each database of the 
federation is stored in the Federation Platform and used to 
construct a global description of the entire federation called a 
ClassMapRepository.   A hash table is used for fast lookups 
of table-to-database mappings and conflict resolution in case 
more than one database has the same table name.   

 
From this global description, a series of data structures are 

created: these structures define the appropriate means of que-
rying and accessing any individual piece of data in the entire 
federation.   The details of this design can be found in the 
Thesis by Ben Fu [18].  Original queries from the client are 
parsed against this global description by the Federation Plat-
form, and the relevant data are automatically queried from the 
selected tables in the several databases. The original query 
structure is then used to create the Local Database and a final 
query is made against the Local Database to produce the re-
sults that are returned to the client.   

In this prototype, extensive use was made of JDBC to 
query the databases, construct the Local Database, and handle 
the table objects.  This was convenient because Informix sup-
ports a Type 4 (native) JDBC driver.  The object support 
within Java and JDBC also simplified many of the internal 
structures [19].   It is entirely consistent with this architecture 
to use other methods, including ODBC and CORBA, to cre-
ate the internal data structures and carry out the communica-
tion with the Class Mappers.  We have done so on other 
related problems with good success. 

  
 

IV. DISCUSSION AND CONCLUSIONS 
 

This paper has presented a new approach to database fed-
eration that we believe will be useful in the coming decade of 

bioinformatics.  The amount of biological data that is being 
created is staggering.   The human genome is only the begin-
ning.  New databases are being constructed for different spe-
cies, for different classes of proteins, and for molecular 
pathways.  Coupled with these data are new experiments that 
yield protein information, genetic information and gene frag-
ment data.  The task of creating paths back and forth between 
these different data sources is truly daunting. 

 
Our short-term goal has been to pick a single pair of impor-

tant databases and demonstrate an architecture that can be 
used to complete cross-database queries using standard data-
base tools and programming methodologies.  Our results are 
readily generalizable to other experimental methods and other 
database collections.  No compromises have been made that 
would restrict this architecture from scaling to very large da-
tabases and large numbers of individual data sources.    An 
extended scheme is shown in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The general Federation Platform architecture. 
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